Navigation

Dr. Tanja Bauer – In-Situ and Operando Spectroscopy

Dr. Tanja Bauer

Department of Chemistry and Pharmacy
Chair of Interface Research and Catalysis (Prof. Dr. Libuda)

Room: Room Büro: P 00.82
Egerlandstr. 3
91058 Erlangen

Research Interests

The expertise of Dr. Tanja Bauer is the investigation of model and real catalysts by in-situ and operando IR spectroscopy techniques. Depending on the physical state of the sample, IR spectroscopy in diffuse reflectance (DRIFTS), transmission (TIRS) and reflection-absorption mode (IRAS, PM-IRAS) can be applied under realistic reaction conditions. Dr. Tanja Bauer’s group aims at establishing structure-activity relationships that allow for a knowledge-driven design of catalysts.

1992 born in Bogen, Germany
2011-2015 Studies of Chemistry at the Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Germany
2014 Scholarship of the Ilse and Dr. Alexander Mayer Foundation (“Deutschlandstipendium”)
2015 Master Thesis at the FAU Erlangen-Nürnberg in the group of Prof. Dr. Jörg Libuda
2015-2019 PhD student at the FAU Erlangen-Nürnberg in the Group of Prof. Dr. Jörg Libuda
2016-2018 Scholarship of the Association of the Chemical Industry (“Chemiefondsstipendium des Verbandes der Chemischen Industrie”)
2019 PhD at the FAU Erlangen-Nürnberg, supervisor: Prof. Dr. Jörg Libuda
Since 2019 Workgroup leader “In-Situ and Operando Spectroscopy” at the Department Chemistry and Pharmacy, FAU Erlangen-Nürnberg (Chair of Interface Research and Catalysis, head: Prof. Dr. Jörg Libuda)

Schuster, R.; Wähler, T.; Kettner, M.; Agel, F.; Bauer, T.; Wasserscheid, P.; Libuda, J.; Model Studies on the Ozone-Mediated Synthesis of Cobalt Oxide Nanoparticles from Dicobalt Octacarbonyl in Ionic Liquids; ChemistryOpen 2020, submitted.

Bezkrovnyi, O. S.; Blaumeiser, D.; Vorokhta, M.; Kraszkiewicz, P.; Pawlyta, M.; Bauer, T.; Libuda, J.; Kepinski, L. NAP-XPS and In Situ DRIFTS of the Interaction of CO with Au Nanoparticles Supported by Ce1– xEuxO2 Nanocubes. J. Phys. Chem. C 2020, 124 (10), 5647–5656. https://doi.org/10.1021/acs.jpcc.9b10142.

Blaumeiser, D.; Stepić, R.; Wolf, P.; Wick, C. R.; Haumann, M.; Wasserscheid, P.; Smith, D. M.; Smith, A. S.; Bauer, T.; Libuda, J. Cu Carbonyls Enhance the Performance of Ru-Based SILP Water-Gas Shift Catalysts: A Combined: In Situ DRIFTS and DFT Study. Catal. Sci. Technol. 2020, 10 (1), 252–262. https://doi.org/10.1039/c9cy01852b.

Bauer, T.; Agel, F.; Blaumeiser, D.; Maisel, S.; Görling, A.; Wasserscheid, P.; Libuda, J. Low-Temperature Synthesis of Oxides in Ionic Liquids: Ozone-Mediated Formation of Co3O4 Nanoparticles Monitored by In Situ Infrared Spectroscopy. Adv. Mater. Interfaces 2019, 6 (20), 1900890. https://doi.org/10.1002/admi.201900890.

Raman, N.; Maisel, S.; Grabau, M.; Taccardi, N.; Debuschewitz, J.; Wolf, M.; Wittkämper, H.; Bauer, T.; Wu, M.; Haumann, M.; Papp, C.; Görling, A.; Spiecker, E.; Libuda, J.; Steinrück, H.-P.; Wasserscheid, P. Highly Effective Propane Dehydrogenation Using Ga-Rh Supported Catalytically Active Liquid Metal Solutions. ACS Catal. 2019, 9 (10), 9499–9507. https://doi.org/10.1021/acscatal.9b02459.

Wolf, P.; Aubermann, M.; Wolf, M.; Bauer, T.; Blaumeiser, D.; Stepic, R.; Wick, C. R.; Smith, D. M.; Smith, A.-S.; Wasserscheid, P.; Libuda, J.; Haumann, M. Improving the Performance of Supported Ionic Liquid Phase (SILP) Catalysts for the Ultra-Low-Temperature Water–Gas Shift Reaction Using Metal Salt Additives. Green Chem. 2019, 21 (18), 5008–5018. https://doi.org/10.1039/C9GC02153A.

Auer, F.; Blaumeiser, D.; Bauer, T.; Bösmann, A.; Szesni, N.; Libuda, J.; Wasserscheid, P. Boosting the Activity of Hydrogen Release from Liquid Organic Hydrogen Carrier Systems by Sulfur-Additives to Pt on Alumina Catalysts. Catal. Sci. Technol. 2019, 9 (13), 3537–3547. https://doi.org/10.1039/c9cy00817a.

Bauer, T.; Maisel, S.; Blaumeiser, D.; Vecchietti, J.; Taccardi, N.; Wasserscheid, P.; Bonivardi, A.; Görling, A.; Libuda, J. Operando DRIFTS and DFT Study of Propane Dehydrogenation over Solid- and Liquid-Supported GaxPty Catalysts. ACS Catal. 2019, 9 (4), 2842–2853. https://doi.org/10.1021/acscatal.8b04578.

Bauer, T.; Stepic, R.; Wolf, P.; Kollhoff, F.; Karawacka, W.; Wick, C. R.; Haumann, M.; Wasserscheid, P.; Smith, D. M.; Smith, A. S.; Libuda, J. Dynamic Equilibria in Supported Ionic Liquid Phase (SILP) Catalysis: In Situ IR Spectroscopy Identifies [Ru(CO)xCly]n Species in Water Gas Shift Catalysis. Catal. Sci. Technol. 2018, 8 (1), 344–357. https://doi.org/10.1039/c7cy02199b.

Bauer, T.; Hager, V.; Williams, M. B.; Laurin, M.; Döpper, T.; Görling, A.; Szesni, N.; Wasserscheid, P.; Haumann, M.; Libuda, J. Palladium-Mediated Ethylation of the Imidazolium Cation Monitored In Operando on a Solid Catalyst with Ionic Liquid Layer. ChemCatChem 2017, 9 (1), 109–113. https://doi.org/10.1002/cctc.201601222.

Bauer, T.; Voggenreiter, M.; Xu, T.; Wähler, T.; Agel, F.; Pohako-Esko, K.; Schulz, P.; Döpper, T.; Görling, A.; Polarz, S.; Wasserscheid, P.; Libuda, J. ZnO Nanoparticle Formation from the Molecular Precursor [MeZnOtBu]4 by Ozone Treatment in Ionic Liquids: In-Situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment. Zeitschrift fur Anorg. und Allg. Chemie 2017, 643 (1), 31–40. https://doi.org/10.1002/zaac.201600345.

Xu, T.; Waehler, T.; Vecchietti, J.; Bonivardi, A.; Bauer, T.; Schwegler, J.; Schulz, P. S.; Wasserscheid, P.; Libuda, J. Gluing Ionic Liquids to Oxide Surfaces: Chemical Anchoring of Functionalized Ionic Liquids by Vapor Deposition onto Cobalt(II) Oxide. Angew. Chemie – Int. Ed. 2017, 56 (31), 9072–9076. https://doi.org/10.1002/anie.201704107.

Xu, T.; Waehler, T.; Vecchietti, J.; Bonivardi, A.; Bauer, T.; Schwegler, J.; Schulz, P. S.; Wasserscheid, P.; Libuda, J. Interaction of Ester-Functionalized Ionic Liquids with Atomically-Defined Cobalt Oxides Surfaces: Adsorption, Reaction and Thermal Stability. ChemPhysChem 2017, 18 (23), 3443–3453. https://doi.org/10.1002/cphc.201700843.

Bauer, T.; Mehl, S.; Brummel, O.; Pohako-Esko, K.; Wasserscheid, P.; Libuda, J. Ligand Effects at Ionic Liquid-Modified Interfaces: Coadsorption of [C2C1Im][OTf] and CO on Pd(111). J. Phys. Chem. C 2016, 120 (8), 4453–4465. https://doi.org/10.1021/acs.jpcc.6b00351.

Mehl, S.; Bauer, T.; Brummel, O.; Pohako-Esko, K.; Schulz, P.; Wasserscheid, P.; Libuda, J. Ionic-Liquid-Modified Hybrid Materials Prepared by Physical Vapor Codeposition: Cobalt and Cobalt Oxide Nanoparticles in [C1C2Im][OTf] Monitored by in Situ IR Spectroscopy. Langmuir 2016, 32 (34), 8613–8622. https://doi.org/10.1021/acs.langmuir.6b02303.

Brummel, O.; Faisal, F.; Bauer, T.; Pohako-Esko, K.; Wasserscheid, P.; Libuda, J. Ionic Liquid-Modified Electrocatalysts: The Interaction of [C1C2Im][OTf] with Pt(111) and Its Influence on Methanol Oxidation Studied by Electrochemical IR Spectroscopy. Electrochim. Acta 2016, 188, 825–836. https://doi.org/10.1016/j.electacta.2015.12.006.

Mehl, S.; Toghan, A.; Bauer, T.; Brummel, O.; Taccardi, N.; Wasserscheid, P.; Libuda, J. Pd Nanoparticle Formation in Ionic Liquid Thin Films Monitored by in Situ Vibrational Spectroscopy. Langmuir 2015, 31 (44), 12126–12139. https://doi.org/10.1021/acs.langmuir.5b03386.

 

Logo ORCiD
Logo Google Scholar

 

CIRCAT-Team (Dr. Tanja Bauer, Simon Schötz, Dominik Blaumeiser)

CIRCAT-Team (Dr. Tanja Bauer, Simon Schötz, Dominik Blaumeiser)